${ }^{\text {(14) }}$		Horse Power Ratings 3 Phase Motor		OPEN	NEMA 1 General Purpose (metal)	NEMA4X Hose Dust Tight (non metal)	NEMA 4/12 (metal)	NEMA 3R Hose + Dust Tight Outdoor (metal)
AC-1	AC80	Volts	HP					
32A	18A	$\begin{aligned} & 200 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 480 \mathrm{~V} \\ & 600 \mathrm{~V} \\ & \hline \text { Volts } \end{aligned}$	$\begin{array}{\|l\|} \hline 71 / 2 \\ 71 / 2 \\ 10 \\ 10 \\ H P \end{array}$	$\begin{aligned} & \text { TECX } 18 \\ & -* 0-\oplus \\ & \$ 65.00 \end{aligned}$	$\begin{aligned} & \text { TECX } 18 \\ & -+1-\oplus \\ & \$ 158.00 \end{aligned}$	$\begin{aligned} & \text { TECX } 18 \\ & -* 4 X-\oplus \\ & \$ 178.00 \end{aligned}$	$\begin{aligned} & \text { TECX } 18 \\ & -* 4-\oplus \\ & \$ 218.00 \end{aligned}$	$\begin{aligned} & \text { TECX } 18 \\ & -* 3 R-\oplus \\ & \$ 196.00 \end{aligned}$
50A	32A	$\begin{aligned} & 200 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 480 \mathrm{~V} \\ & 600 \mathrm{~V} \\ & \hline \text { Volts } \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 20 \\ & 20 \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & \text { TECX } 32 \\ & -\neq 0-\oplus \\ & \$ 90.00 \end{aligned}$	TECX 32 -* 1 - -1 \$168.00	$\begin{aligned} & \text { TECX } 32 \\ & - \pm 4 X-\oplus \\ & \$ 192.00 \end{aligned}$	$\begin{aligned} & \text { TECX } 32 \\ & -* 4-\oplus \\ & \$ 228.00 \end{aligned}$	$\begin{aligned} & \text { TECX } 32 \\ & -\geqslant 3 R-\oplus \\ & \$ 218.00 \end{aligned}$
80A	65A	$\begin{aligned} & 200 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 480 \mathrm{~V} \\ & 600 \mathrm{~V} \\ & \hline \text { Volts } \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 40 \\ & 40 \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & \text { TECX } 65 \\ & -0-\oplus \\ & \$ 150.00 \end{aligned}$	TECX 65 $-* 1-\oplus$ \$215.00	TECX 65 - +4 X - - \$274.00	$\begin{aligned} & \text { TECX } 65 \\ & -* 4-\oplus \\ & \$ 296.00 \end{aligned}$	$\begin{aligned} & \text { TECX } 65 \\ & -* 3 R-\oplus \\ & \$ 268.00 \end{aligned}$
110 A	95A	$\begin{aligned} & 200 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 480 \mathrm{~V} \\ & 600 \mathrm{~V} \\ & \hline \text { Volts } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 50 \\ & 50 \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & \text { TECX } 95 \\ & -* 0-\oplus \\ & \$ 216.00 \end{aligned}$	TECX 95 $\$ 326.00$	$\begin{aligned} & \text { TECX } 95 \\ & -* 4 X-\oplus \\ & \$ 362.00 \end{aligned}$	TECX 95 -* 4-由 \$364.00	$\begin{aligned} & \text { TECX } 95 \\ & -* 3 R-\oplus \\ & \$ 330.00 \end{aligned}$

Add " S " to begining of part\# for Single Phase. 1 phase HP ratings on page 36

Pushbuttons and Transformers.
for starters see page
Accessories p. 43

*Coil Voltage Suffix	
*-Add Suffix AC Voltage	
-A	$=120 \mathrm{~V}$
-C	$=230 \mathrm{~V} / 208 \mathrm{~V}$
-E	$=480 \mathrm{~V}$
-F	$=600 \mathrm{~V}$
-D	$=380 \mathrm{~V}$
-G	$=24 \mathrm{~V}$
$-H$	$=280 \mathrm{~V}$

PART \# EXAMPLE:
TECX 18-A1-10A
TECX = ECX 18 Contactor
A $=120$ VAC Coil
1 = NEMA 1 Enclosure
10A $=7$-10 AMP Overload

Type RTECX 3 Phase Reversing Motor Starters

ذ্ৰ		Horse Ratin 3 Phase	ower gs Motor	OPEN	NEMA 1 General Purpose (metal)	NEMA4X Hose Dust Tight (non metal)	NEMA 4/12 (metal)	NEMA 3R Hose + Dust Tight Outdoor (metal)
		Volts	HP					
32A	18A	$\begin{aligned} & 200 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 480 \mathrm{~V} \\ & 600 \mathrm{~V} \\ & \hline \text { Volts } \end{aligned}$	$\begin{aligned} & \hline 7_{1 / 2} \\ & 7_{1 / 2} \\ & 10 \\ & 10 \\ & \mathrm{HP} \\ & \hline \end{aligned}$	$\left\|\begin{array}{\|c} \text { RTECX } 18 \\ -* 0-\oplus \\ \$ 110.00 \end{array}\right\|$	$\begin{aligned} & \text { RTECX } 18 \\ & -* 1-\oplus \\ & \$ 203.00 \end{aligned}$	$\begin{aligned} & \text { RTECX } 18 \\ & -\psi 4 X-\oplus \\ & \$ 223.00 \end{aligned}$	$\begin{aligned} & \text { RTECX } 18 \\ & -* 4-\oplus \\ & \$ 263.00 \end{aligned}$	$\begin{aligned} & \text { RTECX } 18 \\ & -* 3 R-\oplus \\ & \$ 263.00 \end{aligned}$
50A	32A	$\begin{aligned} & 200 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 480 \mathrm{~V} \\ & 600 \mathrm{~V} \\ & \hline \text { Volts } \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 20 \\ & 20 \\ & \mathrm{HP} \end{aligned}$	$\begin{array}{\|l\|l} \text { RTECX } 32 \\ ->0-\oplus \\ \$ 143.00 \end{array}$	$\begin{aligned} & \text { RTECX } 32 \\ & -=1-\oplus \\ & \$ 221.00 \end{aligned}$	$\begin{aligned} & \text { RTECX } 32 \\ & -\# 4 X-\oplus \\ & \$ 245.00 \end{aligned}$	$\begin{aligned} & \text { RTECX } 32 \\ & -* 4-\oplus \\ & \$ 281.00 \end{aligned}$	$\begin{aligned} & \text { RTECX } 32 \\ & -+3 R-\oplus \\ & \$ 249.00 \end{aligned}$
80A	65A	$\begin{aligned} & 200 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 480 \mathrm{~V} \\ & 600 \mathrm{~V} \\ & \hline \text { Volts } \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 40 \\ & 40 \\ & H P \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RTECX } 65 \\ & -\star 0-\oplus \\ & \$ 261.00 \end{aligned}$	$\begin{aligned} & \text { RTECX } 65 \\ & -* 1-\oplus \\ & \$ 326.00 \end{aligned}$	$\begin{aligned} & \text { RTECX } 65 \\ & -* 4 X-\oplus \\ & \$ 347.00 \end{aligned}$	$\begin{aligned} & \text { RTECX } 65 \\ & -* 4-\oplus \\ & \$ 407.00 \end{aligned}$	$\begin{aligned} & \text { RTECX } 65 \\ & -* 3 R-\oplus \\ & \$ 379.00 \end{aligned}$
110A	95A	$\begin{aligned} & 200 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 480 \mathrm{~V} \\ & 600 \mathrm{~V} \\ & \hline \text { Volts } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 50 \\ & 50 \\ & \mathrm{HP} \end{aligned}$	$\begin{array}{\|l} \text { RTECX } 95 \\ -* 0-\oplus \\ \$ 401.00 \end{array}$	$\begin{aligned} & \text { RTECX } 95 \\ & -* 1-\oplus \\ & \$ 511.00 \end{aligned}$	$\begin{aligned} & \text { RTECX } 95 \\ & -=4 X-\oplus \\ & \$ 547.00 \end{aligned}$	$\begin{aligned} & \text { RTECX } 95 \\ & -* 4-\oplus \\ & \$ 549.00 \end{aligned}$	$\begin{aligned} & \text { RTECX } 95 \\ & -* 3 R-\oplus \\ & \$ 515.00 \end{aligned}$

Pushbuttons and Transformers

 for starters see Accessories pageAll above Reversing starters come standard with 2 N.O. +2 N.C. Aux contacts.

*Coil Voltage Suffix	
*-Add Suffix AC Voltage	
-A	$=120 \mathrm{~V}$
-C	$=230 \mathrm{~V} / 208 \mathrm{~V}$
-E	$=480 \mathrm{~V}$
-F	$=600 \mathrm{~V}$
$-D$	$=380 \mathrm{~V}$
-G	$=24 \mathrm{~V}$
$-H$	$=280 \mathrm{~V}$

PART \# EXAMPLE:
RTECX 18 -A1-10A
RTECX = ECX 18 Reversing Contactor
A $=120$ VAC Coil
1 = NEMA 1 Enclosure
10A = 7-10 AMP Overload

(\oplus Add to Part \#	Overload Amp Range
.63A	-. $4-.63 \mathrm{~A}$
-1A	-. $63-1 \mathrm{~A}$
1.6A	-1-1.6A
-2A	-1.25-2A
-2.5	-1.6-2.5A
-4A	-2.5-4A
-6A	-4-6A
-8A	-5.5-8A
-10A	-7-10A
-13A	-9-13A
-18A	-12-18A
-25A	-17-25A
-32A	-23-32A
-36A	-28-36A
-40A	-30-40A
-50A	-37-50A
-65A	-48-65A
-80A	-63-80A
-93A	-80-93A

Dimensions for RTECX Starters				
mm/inches	H	X W	D	
RTECX 18	118 $\left(4.65^{\prime \prime}\right)$	105 $\left(4.13^{\prime \prime}\right)$	125 $\left(4.92^{\prime \prime}\right)$	
RTECX 32	140 $\left(5.51^{\prime \prime}\right)$	127 $\left(5.00^{\prime \prime}\right)$	138 $\left(5.43^{\prime \prime}\right)$	
RTECX 65	180 $\left(7.09^{\prime \prime}\right)$	165 $\left(6.50^{\prime \prime}\right)$	154 $\left(6.06^{\prime \prime}\right)$	
RTECX 95	180 $\left(7.09^{\prime \prime}\right)$	172 $\left(6.77^{\prime \prime}\right)$	165 $\left(6.50^{\prime \prime}\right)$	

