TYPE XLSK AC MOTOR STARTERS 3 Phase Full Voltage-Across the Line

Modifications and accessories are listed on pages 65, 68.dimensions page 70

Steps To Order Motor Starter:

Step 1-Size Choose from the UL HP and Voltage list per your application.
For example: 5 HP 230 V 3 phase part \# XLS 7 K .
Step 2 - Coil* From the coil suffix chart on the next page choose the suffix for your control circuit voltage requirement.(Example: 24VAC $=$ G-) (Part \# XLS7K-G)

Step 3 -Enclosure specify "open" or "enclosed" requirements.
For example if NEMA 12 (part \# XLS7K-G12-).
Step 4 -Overload Amps** This step requires a suffix for your overload protection, refer to "OVERLOAD RELAY SUFFIX TABLE"
(Example: 5HP @ 230V 3 Phase, if 13 Full Load Amps = suffix "N".) Example: XLS7K-G12-N
 TYPE XLSK AC STARTERS 3 Phase Full Voltage-Across the Line

All Starters Supplied with BUILT-IN HEATERS

Size 3-5 © (UL) C
NEMA

Single Phase Starters Open and Enclosed Types

NEMA 1 Open Starter (Type SXLS7K 3HP 230V)

NEMA 1 Enclosed (Type SXLS7K 3HP 230V)

NEMA 4X Enclosed start/stop operator

AEG Maximum H.P. is a conservative rating fully equivalent to or surpassing NEMA ratings.Mechanical life is $10,000,000$ operations with electrical life approximately $1,000,000$ operations at full rated Horse Power.
EE Controls size grouping were designed to match logical motor horse power groupings as used throughout industry As such, more sizes are offered than the NEMA industry. Each unit fully meets applicable codes and can be applied per the NEC code.
More sizes allows users to closer match their motor and drives package with the result of substantial cost and space savings.

In industry, the metal General Purpose NEMA 1 enclosure is the most widely used and versatile design. As standard, a selection of knockouts are provided on all sides for conduit entry and for field start - stop kit or selector switch additions.

Type 4X Enclosed Starters.NEMA 4X starters are UL / CSA listed starters enclosed in type 4 X U.L. listed enclosures. Type 4X enclosures are designed for outdoor / hose down/ dust tight applications and are non-metal corrosion resistant.

See next page 34 for * Coil Voltage Suffix \& ** Overload Suffix page 47

UL HP Rating 1 Phase Motors 115 VHP 230 VHP		OPEN	NEMA 1 General Purpose (Metal)	NEMA 4X Outdoor Dust Tight (Non-metal)	NEMA 4 (Metal)	NEMA 3R Rain Tight (Metal)	NEMA 12 Dust Tight (Metal)
1/2	11/2	sxıs05 See Page 77					
3/4	2	$\begin{gathered} \hline \text { SXLSSKK } \\ -* 0-0^{* *} \\ \$ 142 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { SXLS5KK } \\ -* 1 \text {-** } \\ \text { S216 } \\ \hline \end{gathered}$	$\begin{gathered} \text { SXLS5K } \\ \pm 4 X-* * \\ \$ 267 \\ \hline \end{gathered}$	$\begin{gathered} \text { SXLSSKK } \\ -4-* * \\ \hline \$ 287 \\ \hline \end{gathered}$	$\begin{gathered} \text { SXLSSKK } \\ -* 3 R-* * \\ \text { S247 } \\ \hline \end{gathered}$	$\begin{gathered} \text { SXLS5K } \\ -122^{* *} \\ \$ 247 \\ \hline \end{gathered}$
1	3	$\begin{gathered} \hline \text { SXLS7K } \\ -{ }^{2} 0-0^{* *} \\ \text { S145 } \end{gathered}$	$\begin{aligned} & \begin{array}{l} \text { SXLSTKK } \\ -* 1-* * \\ \$ 217 \end{array} \end{aligned}$	$\begin{gathered} \hline \text { SXLS7K } \\ -* 4 X-* * \\ \$ 270 \end{gathered}$	$\begin{gathered} \text { SXLS7K } \\ \mathbf{- *}^{*}{ }^{2 * *} \\ \$ 290 \end{gathered}$	$\begin{gathered} \hline \text { SXLS7K } \\ -{ }^{* 3 R-* *} \\ \$ 250 \end{gathered}$	$\begin{gathered} \text { SXLS7K } \\ =12+* \\ \$ 250 \end{gathered}$
11/2	3	$\begin{aligned} & \hline \text { SXLS11K } \\ & -{ }^{*} 0^{-* *} \\ & \$ 170 \end{aligned}$	$\begin{aligned} & \hline \text { SXLS11K } \\ & -* 1-* * \\ & \$ 242 \end{aligned}$	$\begin{gathered} \text { SXLS11K } \\ -{ }^{*} 4 X-\cdots \cdots \\ \$ 295 \end{gathered}$	$\begin{gathered} \text { SXLS11K } \\ -4-{ }^{* * *} \\ \text { S315 } \end{gathered}$	$\begin{aligned} & \text { SXLS11K } \\ & -3 R-* * \\ & \$ 275 \end{aligned}$	$\begin{aligned} & \hline \text { SXLS11K } \\ & -12-{ }^{* \pi} \\ & \$ 275 \end{aligned}$
2	5	$\begin{aligned} & \hline \text { SXLS15K } \\ & -{ }^{*} 0^{-*+} \\ & \$ 220 \end{aligned}$	$\begin{gathered} \hline \text { SXLS15K } \\ -\star 1-{ }^{-\star+} \\ \$ 292 \end{gathered}$	$\begin{aligned} & \hline \text { SXLS15K } \\ & -* 4 X X^{-* *} \\ & \$ 345 \end{aligned}$	$\begin{gathered} \text { SXLS15K } \\ -* 4{ }_{c}^{* * *} \\ \$ 355 \end{gathered}$	$\begin{aligned} & \hline \text { SXLS15K } \\ & -* 3 R-* * \\ & \$ 315 \end{aligned}$	$\begin{gathered} \hline \text { SXLS 15K } \\ \begin{array}{c} -12-* * \\ \$ 315 \end{array} \end{gathered}$
3	5	$\begin{aligned} & \text { SXLS18K } \\ & -* 0^{* * *} \\ & \$ 260 \end{aligned}$	$\begin{aligned} & \text { SXLS18K } \\ & -* 1 * * \\ & \$ 332 \end{aligned}$	$\begin{aligned} & \text { SXLS18K } \\ & -* 4 X-* * \\ & \$ 385 \end{aligned}$	$\begin{aligned} & \text { SXLSTSK } \\ & -4-4{ }^{-* *} \\ & \$ 400 \end{aligned}$	$\begin{aligned} & \text { SXLS18K } \\ & -* 3 R-* * \\ & \$ 355 \end{aligned}$	$\begin{aligned} & \hline \text { SXLS18K } \\ & -{ }^{*} 12-* * \\ & \$ 355 \end{aligned}$
3	71/2	$\begin{gathered} \hline \text { SXLS22K } \\ -* 0-* * \\ \$ 285 \end{gathered}$	$\begin{aligned} & \text { SXLS22K } \\ & -* 1-* * \\ & \$ 375 \end{aligned}$	$\begin{aligned} & \text { SXLS22K } \\ & -* 4 \times-\cdots * \\ & \$ 441 \end{aligned}$	$\begin{gathered} \hline \text { SXLS22K } \\ \pm 4-\times * \\ \$ 447 \end{gathered}$	$\begin{aligned} & \hline \text { SXLS22K } \\ & -* 3 R-* * \\ & \$ 389 \end{aligned}$	$\begin{gathered} \hline \text { SXLS22K } \\ -+122^{* *} \\ \$ 389 \end{gathered}$
5	10	$\begin{aligned} & \hline \text { SXLS30K } \\ & -{ }^{* 0-* *} \\ & \$ 386 \end{aligned}$	$\begin{aligned} & \hline \text { SXLS30K } \\ & -* 11^{* * *} \\ & \$ 476 \end{aligned}$	$\begin{gathered} \hline \text { SXLS30K } \\ -* 4 \mathrm{XX**} \\ \$ 542 \end{gathered}$	$\begin{aligned} & \text { SXLS30K } \\ & -* 4-\cdots \\ & \$ 690 \end{aligned}$	$\begin{gathered} \hline \text { SXLS30K } \\ -3 R-* * \\ \$ 499 \end{gathered}$	$\begin{gathered} \hline \text { SXLS30K } \\ -* 12-* * \\ \$ 499 \end{gathered}$
71/2	15	$\begin{gathered} \hline \text { SXLS45K } \\ -* 0^{-* *} \\ \$ 535 \end{gathered}$	$\begin{aligned} & \text { SXLS45K } \\ & -* 1-* * \\ & \text { S638 } \end{aligned}$	$\begin{aligned} & \text { SXLS45K } \\ & -{ }^{*-4 X} 4 \times{ }^{-* *} \\ & \$ 735 \end{aligned}$	$\begin{aligned} & \text { SXLS45K } \\ & -* 4 *^{* *} \\ & \$ 994 \end{aligned}$	$\begin{aligned} & \hline \text { SXLS45K } \\ & -* 3 R R^{* *} \\ & \$ 708 \end{aligned}$	$\begin{gathered} \text { SXLS45K } \\ -* 122^{* * *} \\ \$ 708 \end{gathered}$
10	20	$\begin{aligned} & \text { SXLS55K } \\ & -{ }^{*} 0-{ }^{-* *} \\ & \text { S625 } \end{aligned}$	$\begin{gathered} \hline \text { SXLS55K } \\ -1 \text { _-** } \\ \$ 777 \end{gathered}$	$\begin{gathered} \hline \text { SXLS55K } \\ -* 4 X-\star \\ \$ 1,302 \end{gathered}$	$\begin{gathered} \text { SXLS55K } \\ -{ }^{*} \mathbf{4 K}^{* * *} \\ \$ 1,533 \end{gathered}$	$\begin{gathered} \hline \text { SXLS55K } \\ -* 3 R-* * \\ \$ 1,332 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { SXLS555K } \\ -* 12-^{* *} \\ \$ 1,332 \end{gathered}$

p. 48 Modifications \& Accessories P.66, 68

Discount Schedule ST

SINGLE PHASE REVERSING STARTERS $1 \varnothing$

Single Phase Reversing Starter Controls (Included)

A) All RSXLSK Series Reversing Starters are cUL Approved.
B) All Reversing Starters Include Thru Door Reset as Standard.
C) Type RSXLSK Starters Have Precision Ambient

Compensated heaters. $\left(25^{\circ} \mathrm{C}-+60^{\circ} \mathrm{C}\right)-11^{\circ} \mathrm{F}-+140^{\circ} \mathrm{F}$

Size	NEMA Horse Power Ratings1 Phase Motors 115 V HP 230 VHP		OPEN	NEMA 1 General Purpose (metal)	NEMA 4X Outdoor) Dust Tight (non metal)	NEMA 4 4 (metal)	NEMA 3R Raintight (metal)	NEMA 12 Dust Tight (metal)
MINI LIST	1/2	1		RSXLS05 See Page 77				
$\frac{00}{\text { LIST }}$	$3 / 4$	2	$\begin{gathered} \text { RSXLS5K } \\ -\star 0-\star \star \\ \$ 262 \end{gathered}$	$\begin{gathered} \text { RSXLS5K } \\ -\star 1-\star \star \\ \$ 352 \end{gathered}$	$\begin{aligned} & \text { RSXLS5K } \\ & -\star 4 \text { X- } \star \star \\ & \$ 418 \end{aligned}$	$\begin{gathered} \text { RSXLS5K } \\ -\star 4-\star \star \\ \$ 451 \end{gathered}$	$\begin{gathered} \text { RSXLS5K } \\ -\star 3 \mathrm{R}-\star \star \\ \$ 398 \end{gathered}$	$\begin{aligned} & \text { RSXLS5K } \\ & -\star 12-\star \star \\ & \$ 441 \end{aligned}$
LIST	1	3	$\begin{gathered} \text { RSXLS } 7 \mathrm{~K} \\ -\star 0-\star \star \\ \$ 273 \end{gathered}$	$\begin{gathered} \text { RSXLS7K } \\ -\star 1-\star \star \\ \$ 363 \end{gathered}$	$\begin{gathered} \text { RSXLS7K } \\ -\star 4 \times-\star \star \\ \$ 429 \end{gathered}$	$\begin{gathered} \text { RSXLS } 7 \mathrm{~K} \\ -\star 4-\star \star \\ \$ 465 \end{gathered}$	$\begin{aligned} & \text { RSXLS } 7 \mathrm{~K} \\ & -\star 3 \mathrm{R}-\star \star \\ & \$ 412 \end{aligned}$	$\begin{gathered} \text { RSXLS7K } \\ -\star 12-\star \star \\ \$ 455 \end{gathered}$
$\frac{0}{\text { LIST }}$	1^{12}	3	$\begin{gathered} \text { RSXLS } 11 \mathrm{~K} \\ -\star 0-\star \star \\ \$ 308 \end{gathered}$	$\begin{gathered} \text { RSXLS } 11 \mathrm{~K} \\ -\star 1-\star \star \\ \$ 398 \end{gathered}$	$\begin{gathered} \text { RSXLS } 11 \mathrm{~K} \\ -\star 4 \mathrm{X}-\star \star \\ \$ 464 \end{gathered}$	$\begin{gathered} \text { RSXLS } 11 \mathrm{~K} \\ -\star 4-\star \star \\ \$ 499 \end{gathered}$	$\begin{gathered} \text { RSXLS } 11 \mathrm{~K} \\ -\star 3 \mathrm{R}-\star \star \\ \$ 424 \end{gathered}$	$\begin{gathered} \text { RSXLS } 11 \mathrm{~K} \\ -\star 12-\star \star \\ \$ 489 \end{gathered}$
LIST	2	5	$\begin{gathered} \text { RSXLS } 15 \mathrm{~K} \\ -\star 0-\star \star \\ \$ 418 \end{gathered}$	$\begin{gathered} \text { RSXLS } 15 \mathrm{~K} \\ -\star 1-\star \star \\ \$ 508 \end{gathered}$	$\begin{gathered} \text { RSXLS15K } \\ -\star 4 X-\star \star \\ \$ 574 \end{gathered}$	$\begin{gathered} \text { RSXLS } 15 \mathrm{~K} \\ -\star 4-\star \star \\ \$ 608 \end{gathered}$	$\begin{gathered} \text { RSXLS15K } \\ -\star 3 R-\star \star \\ \$ 568 \end{gathered}$	$\begin{gathered} \text { RSXLS15K } \\ -\star 12-\star \star \\ \$ 598 \end{gathered}$
$\frac{1}{\text { LIST }}$	3	5	$\begin{gathered} \text { RSXLS } 18 \mathrm{~K} \\ -\star 0-\star \star \\ \$ 463 \end{gathered}$	$\begin{gathered} \text { RSXLS } 18 \mathrm{~K} \\ -\star 1-\star \star \\ \$ 453 \end{gathered}$	$\begin{gathered} \text { RSXLS } 18 \mathrm{~K} \\ -\star 4 X-\star \star \\ \$ 619 \end{gathered}$	$\begin{gathered} \text { RSXLS } 18 \mathrm{~K} \\ -\star 4-\star \star \\ \$ 750 \end{gathered}$	$\begin{gathered} \text { RSXLS } 18 \mathrm{~K} \\ -\star 3 \mathrm{R}-\star \star \\ \$ 705 \end{gathered}$	$\begin{gathered} \text { RSXLS } 18 \mathrm{~K} \\ -\star 12-\star \star \\ \$ 740 \end{gathered}$
LIST	3	$71 / 2$	$\begin{gathered} \text { RSXLS22K } \\ -\star 0-\star \star \\ \$ 524 \end{gathered}$	$\begin{gathered} \text { RSXLS22K } \\ -\star 1-\star \star \\ \$ 734 \end{gathered}$	$\begin{gathered} \text { RSXLS22K } \\ -\star 4 X-\star \star \\ \$ 799 \end{gathered}$	$\begin{gathered} \text { RSXLS22K } \\ -\star 4-\star \star \\ \$ 985 \end{gathered}$	$\begin{gathered} \text { RSXLS22K } \\ -\star 3 R-\star \star \\ \$ 784 \end{gathered}$	$\begin{gathered} \text { RSXLS22K } \\ -\star 12-\star \star \\ \$ 975 \end{gathered}$
LIST	5	10	$\begin{gathered} \text { RSXLS30K } \\ -\star 0-\star \star \\ \$ 674 \end{gathered}$	$\begin{gathered} \text { RSXLS } 30 \mathrm{~K} \\ -\star 1-\star \star \\ \$ 884 \end{gathered}$	$\begin{gathered} \text { RSXLS30K } \\ -\star 4 \times-\star \star \\ \$ 949 \end{gathered}$	$\begin{gathered} \text { RSXLS30K } \\ -\star 4-\star \star \\ \$ 1,170 \end{gathered}$	$\begin{gathered} \text { RSXLS30K } \\ -\star 3 R-\star \star \\ \$ 897 \end{gathered}$	$\begin{gathered} \text { RSXLS30K } \\ -\star 12-\star \star \\ \$ 1,160 \end{gathered}$
$\stackrel{2}{\text { LIST }}$	5	15	$\begin{gathered} \text { RSXLS } 37 \mathrm{~K} \\ -\star 0-\star \star \\ \$ 768 \end{gathered}$	$\begin{gathered} \text { RSXLS37K } \\ -\star 1-\star \star \\ \$ 978 \end{gathered}$	$\begin{gathered} \text { RSXLS } 37 \mathrm{~K} \\ -\star 4 \mathrm{X}-\star \star \\ \$ 1,259 \end{gathered}$	$\begin{gathered} \text { RSXLS } 37 \mathrm{~K} \\ -\star 4-\star \star \\ \$ 1,255 \end{gathered}$	$\begin{gathered} \text { RSXLS } 37 \mathrm{~K} \\ -\star 3 \mathrm{R}-\star \star \\ \$ 982 \end{gathered}$	$\begin{gathered} \text { RSXLS } 37 \mathrm{~K} \\ -\star 12-\star \star \\ \$ 1,245 \end{gathered}$

* Coil Suffix Chart

For LS4K-LS18K (3 pole)		
AC	60 Hz	50HZ
-G	24	24
- A	120	120
- B $^{\text {c }}$	200	200
-	220	220
-	277	230
- E	480	380
-F	600	500
DC add 560 to list		
-MSW	12 VD	
- NSW	24 VD	
-OSW	48 VD	
-PSW	110 V	
-RSW	220	

\section*{| For LS22K-LS55K (3 pole) | | | |
| :--- | :--- | :---: | :---: |
| AC | 60 Hz | 50 Hz | |
| $-G$ | 24 | 24 | |
| $-A$ | 120 | 120 | |
| $-B$ | 200 | 200 | |
| $-C$ | 220 | 220 | |
| $-H$ | 277 | 230 | |
| $-E$ | 480 | 380 | |
| $-F$ | 600 | 500 | |}

\section*{ | OSW | $42-48 \mathrm{VDC}$ |
| :--- | :--- | -PSW 110-127 VDC} -RSW 220-250 VDC

For LS75K-LS 375 K (3 Pole)	
AC/DC	$50160 \mathrm{~Hz}+\mathrm{DC}$
-N	$24-28 \mathrm{~V}$
$-A P$	$110-127 \mathrm{~V}$
-CR	$220-250 \mathrm{~V}$
$-E X$	$440-500 \mathrm{~V}$

No Addition for DC above Coil Tolerance for AC/DC coils are less 20\% - +10\% of nominal Voltage.
$=$ If unsure of overload Suffix \& only know HP and voltage see 65,68 chart on the back inside cover

TYPE RXLSK AC REVERSING STARTERS 3 PHASE FULL VOLTAGE

All Starters Supplied with BUILT－IN HEATERS					Size 00－2		$c \in \text { ©U }$		NEMA RATED Comparable NEMA HP NEMA Size
$A C-1$AMPS	AC－3 AMPS	Horse Power（UL）Ratings3 Phase MotorVolts Max ULVPVI	OPEN	ENCLOSED					
				NEMA 1 General Purpose	NEMA 4X • Outdoor （non－metal）	NEMA 4 （metal）	NEMA 3R （metal）	NEMA 12 Dust Tight （metal）	
20A	9 A	200 V 3 HP 230 V 3 HP 460 V 5 HP 600 V 5 HP 200 V 3 HP	See Page 77						
25A	9 A	200 V 3 HP 230 V 3 HP 460 V 5 HP 600 V 7.5 HP LIST	$\begin{gathered} \text { RXLS4K } \\ -\star 0-\star \star \\ \$ 238 \end{gathered}$	$\begin{gathered} \text { RXLS4K } \\ -\star 1-\star \star \\ \$ 328 \end{gathered}$	$\begin{gathered} \text { RXLS4K } \\ -\star 4 \mathrm{x}-\star \star \\ \$ 394 \end{gathered}$	RXLS4K －れ4－ネ＊ $\$ 437$	$\begin{gathered} \text { RXLS4K } \\ -\star 3 R-\star \star \\ \$ 375 \end{gathered}$	$\begin{gathered} \text { RXLSSKK } \\ -\star 12-\star \star \\ \$ 427 \end{gathered}$	
25A	12A	3 HP 200 V 3 HP 230 V 3 HP 460 V 7.5 HP 600 V 10 HP LIST	$\begin{gathered} \underset{-\star 0-\star \star}{\text { RXLS5K }} \\ \$ 262 \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { RXLS5K } \\ -\star 1-\star \star \\ \$ 352 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { RXLS5K } \\ -\star 4 \mathrm{x}-\star \star \\ \$ 418 \end{gathered}$	$\begin{gathered} \text { RXLS5K } \\ -\star 4-\star \star \\ \$ 451 \end{gathered}$	$\begin{gathered} \text { RXLS5K } \\ -\star 3 R-\star \star \\ \$ 398 \end{gathered}$	$\begin{gathered} \text { RXLS5K } \\ -\star 12-\star \star \\ \$ 441 \end{gathered}$	200 V 1.5 HP 230 V 1.5 HP 460 V 2 HP 600 V 2 HP NEMA 00
32 A	18A	200 V 5 HP 230 V 5 HP 460 V 10 HP 600 V 15 HP LIST	$\begin{gathered} \text { RXLSTK } \\ -\star 0-\star \star \\ \$ 273 \\ \hline \end{gathered}$	$\begin{gathered} \text { RXLS.S7K } \\ -\star 1-\star \star \\ \$ 363 \end{gathered}$	$\begin{gathered} \text { RXLS7K } \\ -\star 4 x-\star \star \\ \$ 429 \end{gathered}$	RXLS7K －丸4－ネ $\$ 465$	RXLS7K $-\star 3 R-\star \star$ $\$ 412$	$\begin{gathered} \text { RXLS7K } \\ -\star 12-\star \star \\ \$ 455 \end{gathered}$	
45A	25A	200 V 5 HP 230 V 7.5 HP 460 V 15 HP 600 V 15 HP LIST	$\begin{gathered} \substack{\text { RXLS11K } \\ -\star 0-\star \star \\ \$ 308} \end{gathered}$	$\begin{gathered} \text { RXLS } 11 \mathrm{~K} \\ -\star 1-\star \star \\ \$ 398 \\ \hline \end{gathered}$	RXLS11K $-\star 4 x-\star \star$ $\$ 464$	RXLS11K －＊4－＊＊ \＄499	$\begin{gathered} \text { RXLS11K } \\ -\star 3 R-\star \star \\ \$ 424 \\ \hline \end{gathered}$	RXLS11K $-\star 12-\star \star$ \＄489	200 V 3 HP 230 V 3 HP 460 V 5 HP 600 V 5 HP NEMA 0
60A	32A	200 V 10 HP 230 V 10 HP 460 V 20 HP 600 V 25 HP LIST	$\begin{gathered} \text { RXLS15K } \\ -\star 0-\star \star \\ \$ 418 \\ \hline \end{gathered}$	$\begin{gathered} \text { RXLS15K } \\ -\star 1-\star \star \\ \$ 508 \\ \hline \end{gathered}$	$\begin{gathered} \underset{-\star 4 \mathrm{x}-\star \star}{\mathrm{RXLS} 15 K} \\ \$ 574 \end{gathered}$	$\begin{gathered} \text { RXLS15K } \\ -\star 4-\star \star \\ \$ 608 \end{gathered}$	$\begin{gathered} \text { RXLS15K } \\ -\star 3 R-\star \star \\ \$ 568 \end{gathered}$	$\begin{gathered} \text { RXLS15K } \\ -\star 12-\star \star \\ \$ 598 \end{gathered}$	
60A	40A	200V 10 HP 230 V 10 HP 460 V 25 HP 600 V 25 HP LIST	$\begin{gathered} \underset{-\star 0-\star \star}{\text { RXLS18K }} \\ \$ 463 \\ \hline \end{gathered}$	$\begin{gathered} \text { RXLS18K } \\ -\star 1-\star \star \\ \$ 553 \\ \hline \end{gathered}$	$\begin{gathered} \text { RXLS18K } \\ -\star 4 x-\star \star \\ \$ 619 \\ \hline \end{gathered}$	$\begin{gathered} \text { RXLS18K } \\ -\star 4-\star \star \\ \$ 750 \\ \hline \end{gathered}$	$\begin{gathered} \text { RXLS18K } \\ -\star 3 R-\star \star \\ \$ 705 \end{gathered}$	$\begin{gathered} \text { RXLS18K } \\ -\star 12-\star \star \\ \$ 740 \end{gathered}$	200 V 7.5 HP 230 V 75 HP 460 V 10 HP 600 V 10 HP NEMA 1
90A	50A	200 V 15 HP 230 V 15 HP 460 V 30 HP 600 V 40 HP LIST	$\begin{gathered} \text { RXLS22K } \\ -\star 0-\star \star \\ \$ 524 \end{gathered}$	$\begin{gathered} \text { RXLS22K } \\ -\star 1-\star \star \\ \$ 734 \end{gathered}$	$\begin{gathered} \text { RXLS22K } \\ -\star 4 \mathrm{x}-\star \star \\ \$ 799 \end{gathered}$	$\begin{gathered} \text { RXLS22K } \\ -\star 4-\star \star \\ \$ 985 \end{gathered}$	$\begin{gathered} \text { RXLS22K } \\ -\star 3 R-\star \star \\ \$ 784 \end{gathered}$	$\begin{gathered} \text { RXLS22K } \\ -\star 12-\star \star \\ \$ 975 \end{gathered}$	
110A	65A	200 V 20 HP 230 V 20 HP 460 V 40 HP 600 V 50 HP LIST	$\begin{gathered} \text { RXLS30K } \\ -\star 0-\star \star \\ \$ 674 \end{gathered}$	$\begin{gathered} \text { RXLS30K } \\ -\star 1-\star \star \\ \$ 884 \\ \hline \end{gathered}$	$\begin{gathered} \text { RXLS3OK } \\ -\star 4 \mathrm{x}-\star \star \\ \$ 949 \\ \hline \end{gathered}$	$\begin{array}{r} \text { RXLS30K } \\ -\star 4-\star \star \\ \$ 1,170 \\ \hline \end{array}$	$\begin{gathered} \text { RXLS30K } \\ -\star 3 \mathrm{R}-\star \star \\ \$ 897 \\ \hline \end{gathered}$	$\begin{array}{r} \text { RXLS30K } \\ -\star 12-\star \star \\ \$ 1,160 \\ \hline \end{array}$	
110A	80A	200 V 20 HP 230 V 25 HP 460 V 50 HP 600 V 60 HP LIST	$\begin{gathered} \text { RXLS37K } \\ -\star 0-\star \star \\ \$ 768 \end{gathered}$	$\begin{gathered} \text { RXLS37K } \\ -\star 1-\star \star \\ \$ 978 \end{gathered}$	RXLS37K \＄1，259	$\begin{gathered} \text { RXLS37K } \\ -\star 4-\star \star \\ \$ 1,255 \end{gathered}$	$\begin{gathered} \text { RXLS37K } \\ -\star 3 R-\star \star \\ \$ 982 \end{gathered}$	$\begin{array}{r} \text { RXLSS37K } \\ -\star 12-\star \star \\ \$ 1,245 \end{array}$	200 V 230 V 10 HP 460 HP 25 HP 600 V 25 HP NEMA 2

Steps To Order Motor Starter：
 Step 1－Size Choose from the UL HP and Voltage list per your application． For example： 5 HP 230 V 3 phase part \＃RXLS7K．

Step 2 －Coil＊From the coil suffix chart on the next page choose the suffix for your control circuit voltage requirement．（Example： $24 \mathrm{VAC}=\mathrm{G}-$ ）（Part \＃RXLS7K－G）

Step 3 －Enclosure specify＂open＂or＂enclosed＂requirements． For example if NEMA 12 （part \＃RXLS7K－G12－）．

Step 4 －Overload Amps＊＊This step requires a suffix for your overload protection， refer to＂OVERLOAD RELAY SUFFIX TABLE＂（next page）
（Example：5HP＠230V 3 Phase，if 13 Full Load Amps＝suffix＂N＂．） Example：RXLS7K－G12－N

RXLSK Series Starters

－（what＇s included？）
－AEG 3 Phase Reversing Starters．
－（Ambient compensated Bi metallic windings）． $-25^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}\left(-11.20^{\circ} \mathrm{F}-+140^{\circ} \mathrm{F}\right)$ ．
－Overload Class 10 （adjustable heaters）．
－Electrical \＆Mechanical interlocks as standard －Thru door reset．Enclosed units only）．

Modifications and accessories are listed on pages 65，． 68

For Operators，Transformers \＆Accessories see page 60
p． 62 For NEMA Labelled Contactors，Add－NA＂Suffix，No Additional Charge．See next Page for Coil Voltage Suffix＊Discount Schedule ST

GONTROLS
TYPE RXLSK AC REVERSING STARTERS
3 Phase Full Voltage-Across the Line

All Starters Supplied with BUILT-IN HEATERS
Size 3-5 © (UL) CE
NEMA

AC-1 AMPS	AC-3 AMPS	Horse Power Ratings 3 Phase Motor Max UL Volts HP		OPEN	ENCLOSED					NEMA HP	
				NEMA 1 General Purpose (metal)	NEMA 4X Outdoor Dust Tight (non metal)	NEMA 4 : (metal)	NEMA3R Rain Tight (metal)	NEMA12 Dust Tight (metal)			
140A	95A	$\begin{aligned} & 200 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 460 \mathrm{~V} \\ & 600 \mathrm{~V} \\ & \text { LIST } \end{aligned}$	$\begin{aligned} & 25 \mathrm{HP} \\ & 30 \mathrm{HP} \\ & 60 \mathrm{HP} \\ & 75 \mathrm{HP} \end{aligned}$		$\begin{gathered} \substack{\text { RXLS45K } \\ -\star 0-\star \star \\ \$ 948} \end{gathered}$	$\begin{gathered} \text { RXLS45K } \\ -\star 1-\star \star \\ \$ 1,206 \end{gathered}$	$\begin{gathered} \underset{-\star 4 \mathrm{x}-\star \star}{\mathrm{RXLS} 45 \mathrm{~K}} \\ \$ 1,301 \end{gathered}$	$\begin{gathered} \text { RXLS45K } \\ -\star 4-\star \star \\ \$ 1,450 \end{gathered}$	$\begin{gathered} \text { RXLS45K } \\ -\star 3 R-\star \star \\ \$ 1,199 \end{gathered}$	$\begin{gathered} \text { RXIS45K } \\ -\star 12-\star \star \\ \$ 1,440 \end{gathered}$	
140A	105A	$\begin{aligned} & 200 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 460 \mathrm{~V} \\ & 600 \mathrm{~V} \\ & \text { LIST } \end{aligned}$	$\begin{aligned} & 30 \mathrm{HP} \\ & 40 \mathrm{HP} \\ & 75 \mathrm{HP} \\ & 75 \mathrm{HP} \end{aligned}$	$\begin{gathered} \text { RXLS55K } \\ -\star 0-\star \star \\ \$ 1,128 \end{gathered}$	$\begin{gathered} \text { RXLS55K } \\ -\star 1-\star \star \\ \$ 1.386 \end{gathered}$	$\begin{gathered} \text { RXLS55K } \\ -\star 4 \mathrm{x}-\star \star \\ \$ 1,481 \end{gathered}$	$\begin{gathered} \text { RXLS55K } \\ -\star 4-\star \star \\ \$ 1,850 \end{gathered}$	$\begin{gathered} \text { RXLS55K } \\ -\star 3 R-\star \star \\ \$ 1,395 \end{gathered}$	$\begin{gathered} \text { RXLS55K } \\ -\star 12-\star \star \\ \$ 1,840 \end{gathered}$	200 V 25 HP 230 V 30 HP 460 V 50 HP 600 V 50 HP NEMA 3	
250A	150A	$\begin{aligned} & 200 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 460 \mathrm{~V} \\ & 600 \mathrm{~V} \\ & \hline \text { LIST } \end{aligned}$	$\begin{array}{r} 40 \mathrm{HP} \\ 50 \mathrm{HP} \\ 100 \mathrm{HP} \\ 125 \mathrm{HP} \end{array}$	$\begin{gathered} \text { RXLS75K } \\ -\star 0-\star \star \\ \$ 1,890 \end{gathered}$	$\begin{aligned} & \text { RXLS75K } \\ & -\star 1-\star \star \\ & \$ 2,200 \end{aligned}$	$\begin{gathered} \text { RXLS75K } \\ -\star 4 x-\star \star \\ \$ 2,590 \end{gathered}$	$\begin{gathered} \text { RXLS75K } \\ -\star 4-\star \star \\ \$ 2,675 \end{gathered}$	$\begin{gathered} \text { RXLS75K } \\ -\star 3 R-\star \star \\ \$ 2,464 \end{gathered}$	$\begin{gathered} \text { RXLS75K } \\ -\star 12-\star \star \\ \$ 2.665 \end{gathered}$		
250A	185A	$\begin{aligned} & 200 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 460 \mathrm{~V} \\ & 600 \mathrm{~V} \\ & \hline \text { LIST } \\ & \hline \end{aligned}$	$\begin{array}{r} 50 \mathrm{HP} \\ 60 \mathrm{HP} \\ 125 \mathrm{HP} \\ 150 \mathrm{HP} \end{array}$	$\begin{gathered} \substack{\text { RXLS90K } \\ -\star 0-\star \star \\ \$ 2,390} \end{gathered}$	$\begin{aligned} & \text { RXLS90K } \\ & -\star 1-\star \star \\ & \$ 2,700 \end{aligned}$	$\begin{gathered} \text { RXLS90K } \\ -\star 4 \mathrm{X}-\star \star \\ \$ 3,090 \end{gathered}$	$\begin{aligned} & \text { RXLS90K } \\ & -\star 4-\star \star \\ & \$ 3,425 \end{aligned}$	$\begin{gathered} \text { RXLS90K } \\ -\star 3 R-\star \star \\ \$ 2,884 \end{gathered}$	$\begin{gathered} \text { RXLS90K } \\ -\star 12-\star \star \\ \$ 3,415 \end{gathered}$	200V 40 HP 230 V 50 HP 460 V 100 HP 600 V 100 HP NEMA 4	
315A	205A	$\begin{aligned} & 200 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 460 \mathrm{~V} \\ & 600 \mathrm{~V} \\ & \hline \text { LIST } \end{aligned}$	$\begin{array}{r} 60 \mathrm{HP} \\ 75 \mathrm{HP} \\ 150 \mathrm{HP} \\ 150 \mathrm{HP} \end{array}$	$\begin{gathered} \text { RXLS110K } \\ -\star 0-\star \star \\ \$ 2,858 \end{gathered}$	$\begin{gathered} \text { RXLS110K } \\ -\star 1-\star \star \\ \$ 3,583 \end{gathered}$	$\begin{gathered} \underset{-\star 4 x-\star \star}{\mathrm{RXLS} 110 K} \\ \$ 4,558 \end{gathered}$	$\begin{aligned} & \text { RXLS110K } \\ & -\star 4-\star \star \\ & \$ 4,413 \end{aligned}$	$\begin{gathered} \begin{array}{c} \text { RXLSS110K } \\ -\star 3 R-\star \star \end{array} \\ \$ 4,090 \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { RXLS } 110 K \\ -\star 12-\star \star \end{array} \\ \$ 4,403 \end{gathered}$		
315A	250A	$\begin{aligned} & \hline 200 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 460 \mathrm{~V} \\ & 600 \mathrm{~V} \\ & \hline \text { LIST } \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \mathrm{HP} \\ & 75 \mathrm{HP} \\ & 150 \mathrm{HP} \\ & 150 \mathrm{HP} \end{aligned}$	$\begin{aligned} & \text { RXLS132K } \\ & -\star 0-\star \star \\ & \$ 2.930 \end{aligned}$	$\begin{gathered} \text { RXLS132K } \\ -\star 1-\star \star \\ \$ 3,655 \end{gathered}$	$\begin{gathered} \text { RXLS132K } \\ -\star 4 \mathrm{x}-\star \star \\ \$ 4,630 \end{gathered}$	$\begin{gathered} \text { RXLS } 132 \mathrm{~K} \\ -\star 4-\star \star \\ \$ 4,680 \end{gathered}$	$\begin{gathered} \text { RXLS132K } \\ -\star 3 R-\star \star \\ \$ 4,162 \end{gathered}$	$\begin{gathered} \text { RXLS132K } \\ -\star 12-\star \star \\ \$ 4,670 \end{gathered}$		
450A	309A	$\begin{aligned} & 200 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 460 \mathrm{~V} \\ & 600 \mathrm{~V} \\ & \text { LIST } \end{aligned}$	$\begin{aligned} & 100 \mathrm{HP} \\ & 100 \mathrm{HP} \\ & 250 \mathrm{HP} \\ & 300 \mathrm{HP} \end{aligned}$	$\begin{aligned} & \text { RXLS160K } \\ & -\star 0-\star \star \\ & \$ 3,393 \end{aligned}$	$\begin{gathered} \text { RXLS160K } \\ -\star 1-\star \star \\ \$ 4,118 \end{gathered}$	$\begin{gathered} \text { RXLS160K } \\ -\star 4 x-\star \star \\ \$ 5,093 \end{gathered}$	$\begin{gathered} \text { RXLSS160K } \\ -\star 4-\star \star \\ \$ 4.830 \end{gathered}$	$\begin{gathered} \text { RXLS160K } \\ -\star 3 R-\star \star \\ \$ 4,250 \end{gathered}$	$\begin{gathered} \text { RXLS160K } \\ -\star 12-\star \star \\ \$ 4,820 \end{gathered}$	 200 V 75 HP 230 V 100 HP 460 V 200 HP 600 V 200 HP NEMA 5	
600A	420A	$\begin{aligned} & 200 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 460 \mathrm{~V} \\ & 600 \mathrm{~V} \\ & \hline \text { LIST } \end{aligned}$	$\begin{aligned} & 125 \mathrm{HP} \\ & 150 \mathrm{HP} \\ & 300 \mathrm{HP} \\ & 400 \mathrm{HP} \end{aligned}$	$\begin{aligned} & \text { RXLS220K } \\ & -\star 0-\star \star \\ & \$ 4,210 \end{aligned}$	$\begin{gathered} \text { RXLS220K } \\ -\star 1-\star \star \\ \$ 5,510 \end{gathered}$	$\begin{gathered} \text { RXLS220K } \\ -\star 4 x-\star \star \\ \$ 5,910 \end{gathered}$	$\begin{gathered} \text { RXLS220K } \\ -\star 4-\star \star \\ \$ 6,673 \end{gathered}$	$\begin{gathered} \text { RXLS220K } \\ -\star 3 R-\star \star \\ \$ 6.599 \end{gathered}$	$\begin{gathered} \text { RXLS220K } \\ -\star 12-\star \star \\ \$ 6,663 \end{gathered}$		
700A	550A	$\begin{aligned} & 200 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 460 \mathrm{~V} \\ & 600 \mathrm{~V} \\ & \hline \text { LIST } \end{aligned}$	$\begin{aligned} & 150 \mathrm{HP} \\ & 200 \mathrm{HP} \\ & 400 \mathrm{HP} \\ & 500 \mathrm{HP} \end{aligned}$	$\begin{gathered} \text { RXLS280K } \\ -\star 0-\star \star \\ \$ 6,210 \end{gathered}$	$\begin{gathered} \text { RXLS280K } \\ -\star 1-\star \star \\ \$ 7,510 \end{gathered}$	$\begin{gathered} \text { RXLS280K } \\ -\star 4 x-\star \star \\ \$ 7,910 \end{gathered}$	$\begin{gathered} \text { RXLS280K } \\ -\star 4-\star \star \\ \$ 8,673 \end{gathered}$	$\begin{gathered} \text { RXLS280K } \\ -\star 3 R-\star \star \\ \$ 8,488 \end{gathered}$	$\begin{gathered} \text { RXLS280K } \\ -\star 12-\star \star \\ \$ 8,663 \end{gathered}$		

oil	For LS4K-LS18K (3 pole)			For LS22K-LS55K (3 pole)		
Suffix	AC	60 Hz	50 Hz	AC	60 Hz	50 Hz
	-G	24	24	-G	24	24
	- A	120	120	-A	120	120
	-	200	200	- ${ }^{\text {B }}$	200	200
	-	220	220	-c	220	220
	-	277	230	-	277	230
	- E	480	380	-E	480	380
	-F	600	500	-F	600	500
	DC ad	\$60 to		DC	5120	
	-MSW	12		-NSW		
	-NSW	24 V		-osw		
	-osw	48		-PSW		
	-PSW	110		-RSW		
	-RSW	220				

Discount Schedule ST

Modification \& Accessories
See Page 65, 68

For LS75K-LS375K (3 Pole)	
AC/DC	$50 / 60 \mathrm{~Hz}+\mathrm{DC}$
-N	$24-28 \mathrm{~V}$
$-A P$	$110-127 \mathrm{~V}$
-CR	$220-250 \mathrm{~V}$
-EX	$440-500 \mathrm{~V}$

No Addition for DC above.
Part\# Example: XLS45K: XLS45K $=$ Size LS45K Contactor $A=120$ VAC Coil $\mathrm{I}=$ NEMA 1 Enclosure $\mathrm{Q}=30-43 \mathrm{Amps}$
Complete Part Number: XLS45K-AI-Q

* Overload Relay Suffix			
	O.L. Relay Setting Range		O.L Relay Setting Range
Suffix	(Amps)	Suffix	(Amps)
-	0.16-0.26	-ON	21-26
-C	0.25-0.41	-P	25-32
-D	0.4-0.65	-Q	30-43
-	0.65-1.1	-QN	42-55
-	1.1.5	-RN	54.65
-G	1.3-1.9	-SN	64-82
- H	1.8-2.7	-TM	78-97
- 1	2.5-4	-TN	90-110
-K	4-6.3	-TT	110-140
-L	5.5-8.5	-U	140-190
-M	8-12	-V	175-280
- N	10-16	-W	200-310
-	14.5-18	-WT	250-400
-OM	17.5-22	- X	315-500

For Technical Details on Reversing Starters See Page 54, 57, 72, 73

XLS Starter Drawings

DC Operated *

XLS4K, XLS5K, XLS7K

XLS11K

XLS15K, 18K

XLS22K, 30K, 37K

XLS45K, 55K

XLS11K

XLS15K, 18K

XLS22K, 30K, 37K

XLS45K, 55K

Dimmension Drawings (in.)

XLS Starter Drawings

RXLS Starter Drawings

RXLS STARTERS
Dimmension Drawings (in.)

RXLS STARTERS
Dimmension Drawings (In.)

